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Abstract. Although effective for two dimensional (2D) systems, some approximations may fail in describ-
ing the properties of one-dimensional (1D) models, which belong to a different universality class. In this
paper, we analyze the adequacy of the Composite Operator Method (COM), which provides a good de-
scription of many features of 2D strongly correlated systems, in grasping the physics of 1D models. To this
purpose, the 1D Hubbard model is studied within the framework of the COM by considering a two-pole
approximation and a paramagnetic ground state. The local, thermodynamic and single-particle properties,
the correlation functions and susceptibilities are calculated in the case of half filling and arbitrary filling.
The results are compared with those obtained by the Bethe ansatz (BA) as well as by other numerical and
analytical techniques. The advantages and limitations of the method are analyzed in detail.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.Pm Fermions in reduced dimensions
(anyons, composite fermions, Luttinger liquid, etc.) – 71.27.+a Strongly correlated electron systems; heavy
fermions

1 Introduction

The physics of interacting electrons confined to 1D sys-
tems is one of the most interesting fields of research in
Condensed Matter Physics. The reasons are various. On
the one hand, the physics of 1D systems challenges the
standard picture of interacting electrons in metals, which
has the Fermi liquid (FL) theory as its basic cornerstone.
As Tomonaga and Luttinger [1,2] showed, a strictly 1D in-
teracting electron system cannot be described by FL the-
ory. In such a system charge and spin degrees of freedom
merge into collective low-energy excitations that propa-
gate with different velocities and the quasi-particle pic-
ture, essential to FL theory, breaks down. This new elec-
tronic state is called Luttinger liquid (LL). Signals of
LL behavior can be sought in any physical realization
of 1D electronic systems. Synthetic organic metals like
the Bechgaard salts are probably the best candidates [3].
These metals have crystal structures consisting of alter-
nating layers of organic donor molecules like TMTTF and
TMTSF, and inorganic anions such as PF6, SbF6 or Br.
Stacking planar molecules yield an overlap of the molec-
ular orbitals that is greatest along the stacks and weaker
between them, thus producing quasi-1D conductors. Re-
cent optical measurements in the metallic state of various
Bechgaard salts have shown consistency with LL behav-
ior [4]. On the other hand, the Bechgaard salts are sub-
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ject of intensive studies [5,6] because they have a rich
phase diagram, with antiferromagnetic, spin-Peierls, spin-
density wave and superconducting ground states. In par-
ticular, the superconducting state shows some similarities
to that of high-Tc cuprates (high anisotropic conductiv-
ity, large and anisotropic critical field [7] and short co-
herence length [8]). Also, the interplay between antifer-
romagnetic and superconducting ground states and the
strong sensitivity of Tc to non-magnetic impurities indi-
cate an unconventional superconducting mechanism that
still remains to be determined [5,6,9]. All these proper-
ties are undoubtedly a strong motivation for better un-
derstanding the physics of interacting electrons in 1D sys-
tems. One of the most suitable Hamiltonian to consider for
this purpose is the 1D Hubbard model [10]. This Hamil-
tonian is exactly integrable by means of the BA [11]. In
this way, many properties are known exactly within the
numerics needed in the case of arbitrary particle density
and/or finite temperature. Namely, many ground-state
properties [12,13] (total energy, local magnetization, mag-
netic susceptibility, etc.), charge and spin excitation spec-
tra [14], and some thermodynamic properties [15–17] can
be exactly computed. However, the BA does not provide a
complete framework for describing the physics of the 1D
Hubbard model since many properties, like the correla-
tion and spectral functions, cannot be evaluated from the
BA wave function except for some limiting cases [18,19]
(infinite interaction, static case, half filling). Therefore,
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to compute these quantities, which are among the most
relevant ones for describing real materials and getting a
complete overview, we must consider other approaches.
Bosonization techniques, conformal field theory and quan-
tum transfer matrix (qtm) and string theory investigations
are analytic methods often used for 1D models. They per-
mit to compute key quantities like correlation functions,
scaling relations between their exponents and the veloci-
ties of spin and charge collective modes, but also thermo-
dynamic quantities like the specific heat and the charge
and spin susceptibilities [20–22]. However, these meth-
ods need lengthy and complex calculations. The numerical
techniques [23–30], instead, are limited by the small size of
clusters and the impossibility of reaching very low temper-
atures. We are thus interested in analyzing the adequacy
of a simpler analytical calculation scheme for describing
the physics of correlated electrons in 1D models. This
method, called the Composite Operator Method (COM),
is based on the choice of an appropriate combination of
standard fermionic field operators as basis for describ-
ing the excitations of the system. The properties of the
composite fields are self-consistently determined through
the equations of motion, and the parameters that arise
(internal parameters) are used to fix the representation
where the dynamics is realized [31]. This procedure recov-
ers symmetries that are usually badly violated by other
approaches [32] and provides a good description of many
features of strongly correlated systems; it is in excellent
agreement with numerical simulations on the local and in-
tegrated quantities [33–36] and explains successfully some
anomalous thermodynamic [37,38] and magnetic behav-
iors [39,40] observed in high-Tc cuprate superconductors.
Nevertheless, approximations adequate in higher dimen-
sions can fail when applied to 1D systems. The BA pro-
vides a useful test for any approximate method. In this
paper we study the adequacy of COM to describe the
physics of the 1D Hubbard model. We evaluate the local,
thermodynamic and single-particle properties, the corre-
lation functions and the susceptibilities. Our results are
compared to the BA ones, whenever available. We also
discuss the agreement with other analytical and numeri-
cal techniques, in particular, the Renormalization Group
(RG) and the quantum Monte Carlo (qMC). The advan-
tages and limitations of the COM are discussed. Some
preliminary results have already been published in ref-
erences [41] and [42]; the present work provides an ex-
haustive overview of the application of the COM to the
1D Hubbard model.

The paper is structured as follows. In Section 2, the
framework of the COM for the 1D Hubbard model is ex-
tensively described. The model is presented, the basis
chosen, the solution given and many physical quantities
addressed. In Section 3, the results for half filling and ar-
bitrary filling are analyzed separately. Special attention is
devoted to the case of quarter filling since, together with
the half-filled case, it is believed to be the scenario for
the Bechgaard salts [4]. Finally, in Section 4, some con-
clusions are given. In Appendix A, the two-pole approxi-
mation scheme is reported in some detail.

2 The method

2.1 The model

The 1D Hubbard model is described by the following
Hamiltonian:

H =
∑
ij

[tij − µ δij ] c† (i) c (j) + U
∑

i

n↑ (i) n↓ (i) (1)

where c† (i) =
(
c†↑ (i) , c†↓ (i)

)
is the creation electron oper-

ator at the site i in spinor notation, nσ (i) = c†σ(i) cσ(i) is
the charge density operator for the spin σ, µ is the chem-
ical potential introduced to control the particle density
(i.e., the filling) n and U is the intrasite Coulomb inter-
action. The hopping matrix is given by

tij = −2t
1
N

∑
k

eik(i−j) cos k (2)

where unitary lattice constant and only nearest neighbors
are considered. We have fixed the energy scale in such a
way that tii = 0. Hereafter, any energy will be presented
in units of t and we will consider � = kB = 1.

2.2 The basis

In the case of the Hubbard model, a natural choice for
the operatorial basis is the Hubbard doublet Ψ †(i) =
(ξ†(i), η†(i)), where

ξ†(i) = c†(i) [1 − n(i)] η†(i) = c†(i)n(i). (3)

These operators describe the atomic transitions at the
site i (i.e., the transitions n = 0 ↔ 1 and n = 1 ↔ 2,
respectively). We have

ξ†σ |0〉 = |σ〉 ξ†σ

{ |α〉
|↑↓〉 = 0

η†
σ |σ̄〉 = (−)σ+1 |↑↓〉 η†

σ




|0〉
|σ〉
|↑↓〉

= 0 (4)

where α, σ =↑ (1) or ↓ (2) and {|0〉, |σ〉, |↑↓〉} is the vec-
torial basis on the single site.

2.3 The Green’s function and the COM solution

Considering a two-pole approximation [43] (see Ap-
pendix A) and a paramagnetic ground state, the Fourier
transform of the single-particle retarded thermal Green’s
function G (i, j) =

〈R{Ψ(i), Ψ †(j)
}〉

may be written as

G (k, ω) =
2∑

i=1

σ(i) (k)
ω − Ei (k) + iε

(5)
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where the spectral functions σ(i)(k) are given by

σ
(i)
11 (k) = I11

2Q(k) + (−)i+1g(k)
4Q(k)

(6)

σ
(i)
12 (k) = σ

(i)
21 (k) = (−)i+1 m(k)

2Q(k)
(7)

σ
(i)
22 (k) = I22

2Q(k) + (−)ig(k)
4Q(k)

(8)

and Ei(k) = R(k)−(−)i Q(k) are the energy spectra, with

R(k) =
1
2
U − µ − 2t cosk − m(k)

2 I11I22
(9)

Q(k) =
1
2

√
g2(k) + 4

m2(k)
I11I22

(10)

g(k) = (1 − n)
m(k)
I11I22

− U (11)

m(k) = 2t [∆ + (p − I22) cos k] (12)

I11 = 1 − n/2 and I22 = n/2 are the diagonal elements of
the normalization matrix (see Appendix A). As we can see
from equations (5–12), the Green’s function depends on
the model parameters t and U , the external parameters n
and T (temperature), and three internal parameters: the
chemical potential µ, ∆ and p. The latter two parameters
have the following expressions

∆ = 〈ξα(i) ξ†(i)〉 − 〈ηα(i) η†(i)〉 (13)

p =
1
4
〈nα

µ(i)nµ(i)〉 − 〈(c↑(i) c↓(i))αc†↓(i) c†↑(i)〉 (14)

and they are related [32] to the difference between the hop-
ping amplitudes within the two Hubbard subbands (∆)
and the intersite charge, spin and pair correlation func-
tions (p). The superscript α indicates the projection on
the first neighbor sites

φα(i) =
∑

j

αij φ(j) (15)

nµ(i) = c†(i)σµ c(i) are the charge (µ = 0) and spin (µ =
1, 2, 3) density operators, where σµ = (1, σ), σµ = (−1, σ)
and σ are the Pauli matrices. The main effect of the inter-
nal parameters ∆ and p on the bands Ei(k) is a uniform
shift and a bandwidth renormalization, respectively. De-
pending on how these internal parameters are fixed [32],
very different results are obtained. In the COM they are
determined by solving the following system of coupled self-
consistent equations,


n = 2 (1 − C11 − C22)
∆ = Cα

11 − Cα
22

C12 = 0
(16)

with Cγδ =
〈
Ψγ(i)Ψ †

δ (i)
〉

and Cα
γδ =

〈
Ψα

γ (i)Ψ †
δ (i)

〉
. The

first two equations come from the existing relations be-
tween the parameters n and ∆ and the Green’s function

matrix elements, whereas the third equation has been cho-
sen in order to satisfy the Pauli principle at the level of ma-
trix elements [31,32]. This request, which fixes the proper
representation of the Hilbert space, naturally implies the
fulfillment of the constrains coming from the particle-hole
symmetry [32]; i.e.,

µ(2 − n) = U − µ(n) (17)
∆(2 − n) = −∆(n) (18)
p(2 − n) = 1 − n + p(n). (19)

Let us note that, at half filling, the third self-consistent
equation in (16) is identically satisfied and the p parameter
must be calculated by analytic continuation. In this case
we have µ = U/2, ∆ = 0 and the energy spectra (i = 1, 2)
have the following expression

Ei(k) = −4t p cosk − 1
2
(−)i

√
U2 + 16t2 (2p − 1)2 cos2 k.

(20)

2.4 The physical properties

Within this calculation scheme the evaluation of the phys-
ical properties is straightforward once the internal param-
eters are determined. In the following we will describe how
the relevant quantities can be computed.

2.4.1 The local quantities

The chemical potential µ is one of the outputs of equa-
tions (16). In the non-interacting case, µ is determined as
a function of the particle density n and of the tempera-
ture T by means of the equation

n = 1 − 1
π

∫ π

0

{1 − 2 fF [E(k)]}dk (21)

where

E(k) = −µ − 2t cosk (22)

is the non-interacting energy spectrum and fF(ω) is the
Fermi function. At zero temperature, the previous equa-
tion can be solved analytically and gives

µ = −2t cos
(π

2
n
)
· (23)

The internal energy per site E can be calculated as the
thermal average of the Hamiltonian and is given by

E = 4t
∑
γδ

Cα
γδ + U D (24)

where D = 〈n↑(i)n↓(i)〉 is the double occupancy. In the
insulating phase, at zero temperature and half filling, the
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previous equation assumes the following expression

E =
U

4
+

√
U2 + a t2

π (2p− 1)
E
(√

a t2

U2 + a t2

)

− U2 (2p + 1)
2π (2p − 1)

√
U2 + a t2

K
(√

a t2

U2 + a t2

)
(25)

where a = 16 (2p − 1)2, K(x) and E(x) are the complete
elliptic integrals of first and second kind, respectively. In
the non-interacting case, we have

E = −4t
1
π

∫ π

0

fF [E(k)] cos k dk. (26)

We recall that, at half filling, the Bethe ansatz result of
Lieb and Wu [12] reads as

E = −4t

∫ ∞

0

J0(x)J1(x)
x
(
1 + ex U/2t

) dx (27)

where Jn(x) is the Bessel function of order n. The double
occupancy D can be obtained as

D =
n

2
− C22. (28)

In the non-interacting case, we have D = n2

4 . The local
magnetization L0 = 1

4 〈n3(i)n3(i)〉 can be computed by

L0 =
3
2

(n

2
− D

)
· (29)

In the non-interacting case, we have L0 = 3
4n
(
1 − n

2

)
.

2.4.2 The thermodynamics

The thermodynamic properties can be computed through
the appropriate integrals of the chemical potential and
its derivatives. In particular, the specific heat C can be
obtained as

C(U, T, n) = −T

∫ n

0

∂2

∂T 2
µ(U, T, n′) dn′ (30)

where we have made use of the thermodynamic relation
E = F +TS, with F and S the Helmholtz free energy and
the entropy per site, respectively, and we have exploited
the following expressions

F (U, T, n) =
∫ n

0

µ(U, T, n′) dn′ (31)

S(U, T, n) = −
∫ n

0

∂

∂T
µ(U, T, n′) dn′ (32)

which give

E(U, T, n) =
∫ n

0

[
µ(U, T, n′) − T

∂

∂T
µ(U, T, n′)

]
dn′.

(33)

As it was shown for the 2D case [37], the temperature
derivatives of the chemical potential can be expressed in
terms of the internal parameters. It remains clear that,
once the self-consistent equations (16) are solved, there
exist two ways to calculate the physical quantities. On
the one hand, we can exploit, whenever is possible, the
relations with the Green’s function matrix elements; on
the other hand, we can use the relations between the con-
jugate variables and the Helmholtz free energy computed
through the chemical potential. The energy per site is a
clear example of these two ways of calculation, since it can
be computed by means of both equations (24) and (33).
Another example is the double occupancy, which can be
calculated by using equation (28) and as

D(U, T, n) =
∂

∂U
F (U, T, n) =

∫ n

0

∂

∂U
µ(U, T, n′) dn′.

(34)

Obviously, the exact solution of the model gives identi-
cal results whichever way we choose. On the contrary, any
analytical approximation can receive different results be-
cause the first way mainly exploits the computation of
two-particle static correlation functions while the second
way is based on the value of the chemical potential, which
can be computed by using only one-particle static cor-
relation functions; in this case, for particles, we intend
the original c electrons. Another procedure to compute the
Helmholtz free energy F and the entropy S exploits the
relations E = F + TS and S = −∂F

∂T . Using the latter, we
can rewrite the former as follows

− E

T 2
=

∂

∂T

(
F

T

)
(35)

and obtain for T∗
T � 1

F (n, T, U) = E(n, T ∗, U)

+ T

∫ T

T∗

E(n, T ∗, U) − E(n, T ′, U)
T ′2 dT ′ (36)

where the value of the internal energy E is given by
equation (24). Hereafter, we will put a subindex H near
any quantity calculated from the matrix elements of the
Green’s function and a subindex T near any quantity com-
puted through the value of the chemical potential.

2.4.3 The single-particle properties

The momentum distribution function n(k) is defined by
means of the equation

n =
1
2π

∫ π

−π

n(k) dk. (37)

Within the COM, it can be computed as follows

n(k) = 2 {fF[E1(k)]Z1(k) + fF[E2(k)]Z2(k)} (38)
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where

Zi(k) =
1
2

[
1 − (−)i (1 − n)g(k)

2Q(k)

]
(39)

are the weights of the two subbands. It is easy to verify
that Zi(k) ≤ 1. In the non-interacting case, we have

n(k) = 2fF [E(k)] (40)

and, at zero temperature, the Fermi momentum kF (de-
fined by E(kF) = 0) assumes the value π

2 n.
The density of states for the c electrons is given by the

following expression

Ncc(ω) =
1
2π

2∑
i=1

∑
γδ

∫ π

−π

σ
(i)
γδ (k) δ [ω − Ei (k)] dk. (41)

In the non-interacting case, we have

Ncc(ω) =
1

2π t

1√
1 − (ω+µ

2t

)2 θ

(
1 −

∣∣∣∣ω + µ

2t

∣∣∣∣
)

(42)

which clearly exhibits the well-known 1D van Hove sin-
gularities at the edges of the band (cf. Eq. (22)). In the
interacting case, each singularity splits in two as we have
two distinct subbands.

2.4.4 The correlation functions and the susceptibilities

The distribution function B(r) =
〈
c†(r)c(0)

〉
can be com-

puted as follows

B(r) = 2δr,0 − 2
∑
ab

Cab(r) (43)

where Cab(r) =
〈
Ψa(r)Ψ †

b (0)
〉

is the static correlation
function given by

Cab(r) =
1
2π

2∑
m=1

∫ π

−π

ei k r {1 − fF [Em(k)]}σ
(m)
ab (k) dk.

(44)

At zero temperature and half filling, equation (43) as-
sumes the following simple expression

B(r) = δr,0 − 4t (2p− 1)
1
2π

∫ π

0

cos (k r) cos k

Γ (k)
dk (45)

where Γ (k) =
√

U2/4 + 4t2 (2p− 1)2 cos2 k. In the non-
interacting case, we have

B(r) = δr,0 − 1
π

∫ π

0

{1 − 2fF [E(k)]} cos kr dk (46)

which, at zero temperature, becomes

B(r) =
2

π r
sin

π n r

2
(47)

showing damped oscillations (r−1) of wavelength
λ = 4

n = 2π
kF

.
By considering the one-loop approximation [35], the

two-particle Green’s functions can be calculated in terms
of the single-particle ones.

The density-density correlation function N(r) =
〈n(r)n(0)〉 will be computed as follows

N(r) = n2 +
n(2 − n)
n − 2D

2∑
a,b,c=1

I−1
aa Qabac(r) (48)

where

Qabac(r) = [Iab(r) − Cab(r)] Cac(r) (49)

and Iab are the elements of the normalization matrix. It
is worth noting that equation (48) satisfies the sum rule
N(0) = n + 2D; this is a clear manifestation of the con-
serving nature, at level of local sum rules, of the one-loop
approximation. In the non-interacting case, the density-
density correlation function reads as

N(r) = n2 + δr,0n − 1
2
B2(r) (50)

and shows damped oscillations (r−2) of wavelength λ =
2
n = 2π

2kF
at zero temperature.

The spin-spin correlation function S(r) = 〈n3(r)n3(0)〉
can be obtained from

S(r) =
n(2 − n)

n + 2D − n2

2∑
a,b,c=1

I−1
aa Qabac(r). (51)

We can now establish the following relation between the
spin and charge correlation functions

S(r) =
n − 2D

n + 2D − n2

[
N(r) − n2

]
(52)

which implies they have the same spatial dependence.
Consequently, within the one-loop approximation, gaps in
charge and/or spin sectors will open simultaneously. This
is also the situation in the non-interacting case, where the
spin-spin correlation function reads as

S(r) = δr,0n − 1
2
B2(r). (53)

It is worth pointing out that this limitation is connected
to the use of the one-loop approximation and not to the
Composite Operator Method.

In the linear response theory, the spin susceptibil-
ity is defined as χs(k, ω)= −F 〈R [n3(r, t)n3(0)]〉 (F is
the Fourier transform operator) and can be computed by
means of the following expression within the one-loop ap-
proximation

χs(k, ω) = − n(2 − n)
n + 2D − n2

2∑
a,b,c=1

I−1
aa QR

abac(k, ω) (54)
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where

QR
abac(k, ω) =

1
2π

2∑
m,n=1

∫ π

−π

dp σ
(n)
ab (k + p)σ(m)

ac (p)

× fF [Em(p)] − fF [En(k + p)]
ω + En(k + p) − Em(p) + iε

· (55)

The spin susceptibility, in the non-interacting case, is ob-
tained from the following integral

χs(k, ω) = − 1
π

∫ π

−π

fF [E(p)] − fF [E(k + p)]
ω + E(p) − E(k + p) + iε

dp · (56)

At zero temperature, the uniform and static spin suscep-
tibility reads as

χs =
1

π t sin πn
2

= 2Ncc(0). (57)

The charge susceptibility is defined as χc(k, ω) =
F 〈R [n(r, t)n(0)]〉 and it can be computed as follows

χc(k, ω) = −n(2 − n)
n − 2D

2∑
a,b,c=1

I−1
a QR

abac(k, ω). (58)

Once again, the spin and charge susceptibilities satisfy the
following relation

χs(k, ω) =
n − 2D

n + 2D − n2
χc(k, ω). (59)

In the non-interacting case, the charge susceptibility co-
incides with the spin one (i.e., χc(k, ω) = χs(k, ω)).

The uniform and static spin and charge susceptibilities
can be also calculated directly from their thermodynami-
cal definitions

χs =
∂m

∂h

∣∣∣∣
h=0

(60)

χc =
∂n

∂µ
(61)

where m and h are the magnetization per site and the
external applied field, respectively.

It is worth mentioning that all the expressions given
in this section, computed within the Composite Operator
Method, exactly reproduces the non-interacting and the
atomic limits.

3 The results

The set of self-consistent equations in (16), that deter-
mines the internal parameters, admits two distinct solu-
tions. Hereafter, we will call these solutions COM 1 and
COM 2. The evolution of the internal parameters with
the external ones (i.e., filling, intrasite Coulomb potential
and temperature) reveals substantial differences between
the two solutions. The ∆ parameter is smaller and much
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Fig. 1. Internal parameter ∆ as function of n for T = 0.01
and U = 4, 8 and 12.
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Fig. 2. Internal parameter p as function of n for T = 0.01 and
U = 4, 8 and 12.

more sensitive to the strength of Coulomb interaction in
COM 1 (see Fig. 1). For n ≤ 1, the p parameter is negative
or very small and positive in COM 1, while it is always
positive and of the order of the filling in COM 2 see Fig-
ure 2; actually, at half filling and on increasing U , p tends
to 0 in COM 1 and to 1 in COM 2. In COM 1, the chem-
ical potential µ shows a discontinuity at half filling for
any finite value of the Coulomb interaction and a zone of
instability (i.e., a negative compressibility) at small dop-
ing, temperatures and interaction strength (see Fig. 3).
In COM 2, the discontinuity of the chemical potential ap-
pears only after a critical value of the Coulomb interaction
is reached (see Fig. 4). As we will show in the next sec-
tion, the absence of the Mott-Hubbard transition, which
is a consequence of the mainly negative value of the p pa-
rameter, plays a key role in the physics described by the
COM 1 solution. The instability of COM 1 can be stud-
ied by looking at the compressibility (i.e., κ = 1

n2
∂n
∂µ ). The

instability is confined to a very small region in the plane
(n, T ). This region does not comprehend half filling (see
Fig. 5). For the 2D Hubbard model, which also has two
solutions within the framework of the COM, the region of
instability is much larger.
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3.1 Properties at half filling

The ground-state properties of the 1D Hubbard model at
half filling were exactly derived by Lieb and Wu using the
BA [12]. This exact solution corresponds to an insulat-
ing state with short-range antiferromagnetic (AF) corre-
lations for any finite value of U . According to this, we will

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Gap

U

COM 1
COM 2
BA

Fig. 6. Gap as function of U (COM 1 solution).

π π π π

Fig. 7. Energy spectra E(k) for T = 0, n = 1 and U = 7 and
10 (COM 1 solution).

compare the evolution of the gap in the excitation spec-
trum and the band structure of both solutions with the
BA exact results, in order to choose the solution that gives
the most consistent physical picture at half filling.

As already mentioned above, within the analysis of the
chemical potential, the COM 1 solution presents a gap for
any finite value of the Coulomb interaction, in agreement
with the BA result, while the COM 2 solution is char-
acterized by a critical value of the Coulomb interaction
(i.e., Uc ≈ 6.56) above which a gap opens (see Fig. 6).
The rate at which the gap opens in COM 1 coincides with
that of the exact solution for U ≥ 4. The band structure
(i.e., the excitation spectrum) of the two solutions is an-
other interesting property to be studied and compared.
In fact, many features, more or less anomalous, of both
solutions can be easily understood just looking at their
spectra. As it can be seen in Figure 7, the COM 1 solution
has a typical AF band pattern (i.e., a quasi-halved Bril-
louin zone, the first excitation around k = ±π

2 and a very
narrow bandwidth of the order J = 4t2

U ), in agreement
with the BA result. On the contrary, the band structure
of the COM 2 solution corresponds to a typically param-
agnetic state, with the first hole excitation at k = ±π, the
first electron excitation at k = 0 and a bandwidth of the
order 8t (see Fig. 8). In the figures, the energy is measured
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Fig. 8. Energy spectra E(k) for T = 0, n = 1 and U = 7 and
10 (COM 2 solution).
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for T = 0 and n = 1 (COM 1 solution).

with respect to the chemical potential. In particular, while
COM 2 has two subbands with both a minimum in k = 0
and a maximum in k = ±π, the COM 1 solution has the
upper subband with a maximum in k = ±π and a min-
imum at k1 = ± arccosθ0 and the lower subband with a
maximum at k2 = π − k1 and a minimum in k = 0, where

θ0 =
p U

2t(1 − 2p)
√

1 − 4p
· (62)

For large values of the Coulomb interaction both k1 and
k2 tend to π

2 since p tends to zero (see Fig. 9). According
to this analysis, the width of the subbands and the value
of the gap in both solutions can be easily computed. In
COM 2, the width of the subbands at half filling is W =
8t p, which tends to 8t for large values of the Coulomb
interaction, while the gap, above the critical value Uc =
4t
√

4p− 1 ≈ 6.56, has the expression

∆E = −8t p +
√

U2 + 16t2(2p − 1)2. (63)

On the contrary, in COM 1 the width of the subbands at
half filling is

W = 4t p +
1
2

√
U2 + 16t2(2p − 1)2 − U

√
1 − 4p

2(1 − 2p)
(64)

which tends to J = 4t2

U for large values of the Coulomb
interaction, while the gap, has the expression

∆E =
√

1 − 4p

1 − 2p
U. (65)

Both expressions (i.e., Eqs. (63, 65)) for the gap tend
to U for large values of the Coulomb interaction. It is
worth pointing out that, within the two-pole approxima-
tion, the p parameter rules the opening of the gap at half
filling. In particular, if p < 1

4

(
1 + U2

16t2

)
we have a gapped

solution, because the two subbands have opposite signs for
any value of momentum and therefore they do not over-
lap. This is the case for the COM 1 solution for any value
of the Coulomb interaction. For the COM 2 solution we
have a gap above the critical value Uc. Otherwise, we have
no gap and the two subbands overlap. In particular, both
subbands have negative values for |k| < arccosx0, where
x0 = U/Uc.

We can conclude that only COM 1 gives a description
of the physics of the half-filled 1D Hubbard model consis-
tent with the exact results obtained by the BA. Therefore,
in this section, we will mainly focus on this solution.

3.1.1 Local properties

The internal energy, at half filling and zero temperature,
can be exactly calculated by means of the BA through
equation (27). The two relevant limits (i.e., small and
large Coulomb interaction) read as follows

lim
U→0

E = − 4
|t|
π

+
1
4
U + O

(
U2

t

)

lim
U→∞

E = − 4
t2

U
ln 2 + O

(
t4

U3

)
(66)

where 4 ln 2 ∼= 2.77. The COM solution exactly agrees with
the BA result in the weak-interacting limit, while in the
strong-interacting limit, we have

lim
U→∞

ECOM1
H = − 3

t2

U
+ O

(
t4

U3

)

lim
U→∞

ECOM2
H =5

t2

U
+ O

(
t4

U3

)
· (67)

Again, while COM 1 gives a result very close to the
BA one, the COM 2 solution is very far in this limit.
The internal energy E at half filling and zero tempera-
ture, calculated by means of equation (24) in the COM 1
solution (i.e., ECOM1

H ), is shown, as a function of the
Coulomb interaction strength, in Figure 10. The results
obtained by means of the BA [13] and other analytical
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approaches [44–46] are also reported. As we can see, the
agreement between COM 1 and BA is excellent. The self-
consistent Ladder approximation (SCLA) of reference [46]
shows also a very good agreement for all values of the
coupling, but it does not have the correct behaviour for
an infinite value of the Coulomb interaction. Moreover,
both the Ladder (LA) [46] and the Gutzwiller (GWA
and GWF) [45] approximations go to zero at finite U ,
whereas the Renormalization Group (RG) [44] has the
right asymptotic behaviour for U �→ ∞, but it does not
reproduce the non-interacting limit. The local magnetiza-
tion L0 at half filling and zero temperature as a function of
the interaction strength is shown in Figure 11. We report
both the COM results (i.e., LCOM1

0H and LCOM1
0T ) and the

results obtained by means of the BA [24]. LCOM1
0T is in ex-

cellent agreement with the exact solution. As one should
expect, the electron localization increases with U and for
infinite U reaches a saturation (i.e., zero double occupancy
and zero kinetic energy). Thus, the 1D itinerant electron
system described by the Hubbard chain is equivalent, at
half filling and infinite U , to the system of localized spins
described by the spin- 1

2 AF Heisenberg model.
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Fig. 12. Specific heat CT as function of T for n = 1 and U = 4,
8 and 12 (COM 1 solution).

3.1.2 Thermodynamic properties

The thermodynamic properties of the Hubbard chain
can be evaluated using the BA by means of the finite-
temperature formalism developed by Takahashi [47].

The specific heat CT at half filling, calculated by means
of equation (30) in the COM 1 solution (i.e., CCOM1

T ), is
shown in Figure 12 as a function of the temperature for
different values of the Coulomb interaction. By increas-
ing the interaction strength, the single peak present for
U ≤ W = 4t splits in two peaks moving to opposite di-
rections in temperature (W is the non-interacting band-
width). The low-T feature is due to spin excitations: it
is located at T ∼ J , where J = 4t2

U is the magnitude of
the induced AF exchange parameter. Such a low-T peak
is characteristic of the AF Heisenberg chain [48]. This fea-
ture is consistent with the AF-like band structure of the
COM 1 solution (cf. Fig. 7). The high-T peak is obviously
associated to charge excitations: it moves towards higher
temperature as the gap increases with U . As T increases,
the thermal energy allows the electrons to be excited
across the gap. Such a structure of the specific heat, with
low- and high-T regions, dominated by spin and charge ex-
citations, respectively, is consistent with the physical pic-
ture described by the exact BA solution [24,15,16,21,22]
and it also agrees with recent qMC calculations on finite
chains [25].

In order to get information about the degree of local-
ization of the electrons we have also computed the local
magnetization as a function of the temperature. The re-
sults are reported in Figure 13. Let us note that the max-
imum localization occurs at finite temperature. This is
due to the strong antiferromagnetic correlations present
at zero temperature. These correlations require a virtual
hopping and, therefore, diminish the degree of localiza-
tion. Only by increasing the temperature we can suppress
the antiferromagnetic correlations and increase the local-
ization. Note also that the flat regions at low tempera-
tures end at the same temperature where the local minima
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Fig. 14. Entropy S as function of T for n = 1 and U = 4, 8
and 12 (COM 1 solution).

develop in CT . This further confirms the spin-nature of the
low-T peak in the specific heat.

In the temperature evolution of the entropy at half
filling, spin and charge degrees of freedom manifest sepa-
rately in the strong-interacting regime U ≥ W (see Fig. 14
where SCOM1

T is calculated by means of equation (32) in
the COM 1 solution). The low-T region is dominated by
spin excitations and the high-T region by particle excita-
tions. The internal energy shows an analogous behavior.
The borderline between these two regions can be set at
T ∼ t in very good agreement with both BA [15,16] and
numerical [24] results. It is worth noting that, in our solu-
tion, the entropy shows the correct limiting behavior for
high temperatures (i.e., limT→∞ ST = 2 ln 2 ∼= 1.39).

3.1.3 Correlation functions and susceptibilities

A quantity which gives information about the evolution of
the charge excitations in the system is the charge suscepti-
bility (χc), which we calculate by means of equation (61).
This property is shown in Figure 15 for n = 0.9 and n = 1;
string theory results are taken from reference [22]. The

Fig. 15. Static and uniform charge susceptibility χc as func-
tion of T (COM 1 solution).

first thing to note is the strong dependence of χc on the
particle concentration at low temperatures and for any
coupling regime (not shown): the charge susceptibility is
strongly enhanced as n approaches half filling, while it
goes to zero at n = 1 as a consequence of the opening
of the gap in the charge excitation spectrum. It is worth
noticing our good agreement with the practically exact re-
sults of qtm [21]. For increasing Coulomb interaction (not
shown), the low-temperature enhancement of χc in the low
doping region is more evident, indicating that the charge
excitations are strongly renormalized by the Coulomb in-
teraction near the metal-insulator transition. At higher
temperatures, however, χc decreases with increasing U re-
gardless of the electron concentration [42].

These are already well-known results [15,16] that the
approximation considered here is able to reproduce, thus
capturing the physics of the charge excitations near the
metal-insulator transition. The temperature at which the
gap closes due to the thermal excitations is somewhat
larger in COM 1 than in the Bethe ansatz results [15,16].
This is coherent with the larger value that we obtain for
the gap. Also, χc is more enhanced near half filling (for
instance, at U = 8t and n = 0.8, χCOM1

c,max ∼ 0.9 while
χBA

c,max ∼ 0.25) because of the faster rate at which the gap
opens in our approximation with respect to BA.

Information on the physics of the spin excitations can
be extracted from the evolution of the magnetic suscep-
tibility with temperature and Coulomb interaction. We
discuss the situation close to half filling. The magnetic
susceptibility χs is calculated by means of equation (54)
and its behavior, as a function of the temperature and U ,
is shown in Figure 16. χs presents a peak at low tem-
peratures which moves to lower ones as U increases. It is
also worth noticing that χs is generally enhanced by U .
At half filling [not shown], our results indicate a renor-
malization of the spin excitations, as it is obtained in the
case of the charge susceptibility. This behaviour of χs for
the interacting half-filled chain does not reproduce the
BA result [15,16]. According to the exact solution, χs
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Fig. 16. Static and uniform spin susceptibility χs as function
of T (COM 1 solution).
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Fig. 17. Spin correlation function S(r) for T = 0, n = 1 and
U = 4, 10 (COM 1 solution).

should show the same qualitative behaviour regardless of
the particle density, because the metal-insulator transi-
tion at n = 1 does not renormalize the spin excitations.
Such disagreement between COM 1 and BA is due to the
computation of the two-particle Green’s functions within
the one-loop approximation. In this approximation, the
charge and spin correlation functions have the same spa-
tial dependence (cf. Eq. (59)), and consequently, gaps in
charge or spin sectors will open simultaneously. There-
fore, we obtain the same qualitative behaviour for both
the charge and spin susceptibility.

This disagreement is also present in the results we
have obtained for the spin-spin correlation function (see
Fig. 17). It presents a typical paramagnetic behavior (i.e.,
it is always negative at any finite distance) in contrast
with the exact diagonalization results [24,26] which re-
port short-range antiferromagnetic correlations (i.e., a
spin-spin correlation function alternating in sign between
sites and rapidly decreasing). Nevertheless, the present ap-
proach preserves the 2kF oscillations for any value of the
Coulomb interaction.
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Fig. 18. Internal energy E as a function of n for T = 0 and
U = 2.

3.2 Properties at arbitrary filling

BA predicts a non-magnetic metallic ground state for the
1D Hubbard model at arbitrary filling, with gapless charge
and spin excitations [12]. Ground-state properties, like
the internal energy, chemical potential and local moment,
were studied following Lieb and Wu as a function of the
electron density and Coulomb interaction [13,17], mainly
in the large-U limit, where analytic expressions could be
obtained. By means of the formulation developed by Taka-
hashi for finite temperatures [47], some thermal properties
at arbitrary filling were also calculated [15,16]. More re-
cently, important single-particle properties, as the spec-
tral function and momentum distribution function, have
been evaluated within the BA [49,50] and by means of nu-
merical techniques, like qMC [26–28]. Information on the
charge and spin dynamics is the object of the most recent
studies on one-dimensional models, with the aim of ap-
plying them to real systems. Thus, some authors have an-
alyzed the corresponding two-body correlation functions
of the 1D Hubbard model by means of numerical ap-
proaches [26,27], by using the exact BA solution [49,51]
or through other analytic approaches, like g-ology [20].

In the following sections we present the results ob-
tained for such quantities within the COM for the Hub-
bard chain away from half filling. The COM 2 solution
is not considered, since, as we have commented above, it
does not provide a good description of the system in the
case of half filling. Thus, the COM 1 results are compared
to the ones available by other systematics. We devote spe-
cial attention to the quarter-filled case, since it seems to be
a relevant particle density for many 1D organic metals [4].

3.2.1 Local properties

The doping dependence of the internal energy, calculated
by means of equation (24) in the COM 1 solution (i.e.,
ECOM1

H ), is shown in Figures 18 and 19 for two values of
the Coulomb interaction. For comparison, we also report
the BA results [13] and the ladder (LA) and self-consistent
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Fig. 20. Chemical potential µ as a function of n for T = 0
and U = 2 and 4.

ladder (SCLA) approaches [44,46]. COM 1 agrees reason-
ably with BA, reaching the best agreement at half fill-
ing. The ladder approximation [46] deviates more and
more from the BA as approaching half filling; the self-
consistent ladder approximation [46] probes excellently at
any doping.

The evolution of the chemical potential with the par-
ticle density for COM 1 is compared in Figure 20 with
some numerical data [25]. There is a good agreement over
all the range of doping for the higher temperature. The
disagreement at the lower temperature can be understood
by looking at the size of the gap in COM 1: COM 1 gap is
larger than the BA one and forces the chemical potential
to assume lower (higher) values than in the BA solution
for n < 1 (n > 1).

The good agreement with BA, at quarter-filling and
for any value of U , occurs for the double occupancy too.
For other values of filling the agreement is less satisfactory
(see Fig. 21).

3.2.2 Thermodynamic properties

The evolution of the specific heat CH with the particle
density is studied for various temperatures in the strong
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Fig. 21. Double occupancy D as a function of U for T = 0
and n = 0.5 and 0.75.
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Fig. 22. γ = CH/T as a function of n for U = 8 and T = 0.01,
0.05, 0.1 and 0.4 (COM 1 solution).

coupling regime. As shown in Figure 22, γ = CH/T has a
peak at low densities that simply reflects the shape of the
density of states (see discussion on single-particle proper-
ties in the next section). As n approaches half filling, an-
other peak develops at low temperatures. This indicates
an increasing number of excited states due to the renor-
malization of the charge fluctuations at the opening of the
Mott gap. Let us note that such a peak does not appear
in strongly correlated systems which do not have a metal-
insulator transition like the 1D electron gas with delta-
function interactions [52]. As one should expect, with in-
creasing temperature, the two peaks merge. COM 1 results
for CH/T recover qualitatively those obtained by BA [15].
There are some quantitative differences, namely: the first
peak appears at higher fillings and the double-peak fea-
ture survives up to higher temperatures in BA; the peak
near half filling is higher in COM 1. This latter difference
is expected as the COM 1 gap is larger than the BA one.

To complete the above discussion we show in Figure 23
the particle density n versus the chemical potential µ for
various temperatures. COM 1 results are compared with
the BA ones of reference [15]. The agreement is very good
at low temperatures for densities smaller than 0.55. In
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the half-filled chain, T ∼ t is a relevant temperature as
it signs the border between T -regions dominated by ei-
ther spin or charge correlations [24,25]. The agreement
between COM 1 and BA at T ≥ t is very good for the
whole range of filling. Of course, at higher temperatures
COM 1 result reaches an excellent agreement with BA
since the effect of correlations is completely suppressed.

3.2.3 Single-particle properties

The evolution of the band structure with the interac-
tion strength U is remarkable. Away from half filling
the AF-band pattern of the upper Hubbard subband in
COM 1 disappears as U increases; the first electron ex-
citations appear at k = ±π and the first hole excitations
move slightly away from the half-filling position k = ±π/2
(see Fig. 24).

The corresponding density of states is shown in Fig-
ure 25. It is well known that the density of states in the
non-interacting case exhibits two van Hove singularities
at the edges of the non-interacting band. In the interact-
ing case each of these singularities splits in two since we
have two distinct Hubbard subbands. Due to the AF-like
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Fig. 25. Density of states for n = 0.5, T = 0 and U = 2, 5
and 10 (COM 1 solution).

band shape, three van Hove singularities appear in each
subband leading to the six peaks of the figure. The third
structure in the upper subband of Figure 25 is smoothed
because, away from half filling, as U increases the AF-band
shape of the excitation spectrum disappears.

As we can deduce from the above results the system,
away from half filling, is a conductor for any value of the
interaction strength U in agreement with the BA results.
Then, a natural question arises: what universality class
does this conductor belong to? This is a central issue in
the physics of 1D-models.

The momentum distribution function n(k) is a relevant
property because from its behavior the Fermi-liquid or
non-Fermi liquid nature of the excitations can be inferred.
As it is well known, a finite jump in the zero-temperature
momentum distribution function at the Fermi momen-
tum kF would indicate that the quasiparticle excitations
can be described by a Fermi liquid. Some variational
[53,54], analytic [17] and numerical [55] approaches failed
in understanding the nature of the discontinuity. More
recently, approaches valid in the weak coupling regime (g-
ology and qMC) have found a power-law singularity at kF

predicting a marginal Fermi-liquid nature away from half
filling [27]. The power-law coefficient seems to be an in-
creasing function of U and a decreasing function of the
particle density n.

The approximation that we use limits the information
that can be obtained from the momentum distribution
function. Namely, any two-pole approximation has a mo-
mentum distribution function with sharp discontinuities
at the values of momentum where the Hubbard subbands
cross the Fermi level. Despite this strong limitation, the
momentum distribution function obtained at quarter fill-
ing in COM 1 presents, besides a sharp jump at kF, an-
other discontinuity near 3kF. This latter feature is also
obtained, as a weak singularity, in BA calculations in the
large-U limit [49].

The momentum distribution function in real space
obtained in COM 1 is shown in Figure 26 for various
interaction strengths and quarter filling. In the weak
coupling regime, the distribution function has nodes at
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Fig. 26. Momentum distribution function in real space B(r)
for n = 0.5, T = 0 and U = 0, 2.5, 5, 10 and 30 (COM 1
solution).
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Fig. 27. Spin correlation function S(r) for n = 0.5, T = 0 and
U = 2.5, 4, 5, 10 and 30 (COM 1 solution).

r = 4a, 8a, 12a, . . . which correspond to an oscillation of
wavelength 8a. Since for these values of interaction and
particle density the Fermi momentum is π

4 , this is just
a kF oscillation. Such an oscillation is also observed by
exact diagonalization results [26] for small U . For stronger
interactions, a weak incommensurate modulation, in ad-
dition to the kF oscillation, appears and corresponds to a
3kF oscillation again in agreement with the exact diago-
nalization calculations [26]. The origin of this 3kF feature
is however not clear. According to other numerical calcu-
lations [50] the 3kF singularity seems to be a finite-size
effect and vanishes in the thermodynamic limit. We actu-
ally confirm its presence also in the bulk system.

3.2.4 Correlation functions and susceptibilities

The spin correlation function gives information about the
spin dynamics of the system. Combining this information
with the one obtained from the momentum distribution
function, we can analyze how the electron dynamics is
affected by the surrounding spins, since the spin configu-
ration is modified when an electron moves to another site.
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Fig. 28. Spin correlation function S(r) for U = 4, T = 0 and
n = 0.5 and 1 (COM 1 solution).
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Fig. 29. Spin correlation function S(k) for n = 0.5, T = 0 and
U = 0, 2, 4 and 8 (COM 1 solution).

Therefore, the electron motion will depend on how the
spin configuration constrains the electron dynamics.

The spin correlation function in real space is evalu-
ated in COM 1 for various interacting regimes and rele-
vant particle densities. The results are shown in Figures 27
and 28. As we can see, the amplitude of spin correlation
increases with U and is smeared out away from half filling.
The larger the Coulomb interaction is, the faster the cor-
relations decay. The physical picture that emerges for the
half-filled and quarter-filled Hubbard chain is different. At
n = 1 there are strong antiferromagnetic spin correlations
that decay very fast (at second neighbor sites they are al-
most zero). The existence of short-range AF order is also
visible in the band spectrum as we previously discussed in
detail. For n = 0.5 these correlations are much weaker and
decay more slowly than in the half-filled case. These re-
sults agree with the ones described in reference [26] using
exact diagonalization techniques. In these calculations [26]
the spin correlation function has a 2kF oscillation that is
not smeared out away from half filling. Such oscillation is
not observed in Figures 27 and 28 due to the very fast
decay of the correlation amplitude, but it appears as a
2kF feature in the momentum-dependent spin correlation
function S(k) (see Fig. 29 and explanation below).



A. Avella et al.: The 1D Hubbard model within the Composite Operator Method 413

0

5

10

15

20

25

30

35

40

45

50

3π2ππ-3π -2π

COM 1
T = 0.001
U = 4
n=0.99

0-π

χs(k)

Fig. 30. Spin susceptibility χs(k) for U = 4, T = 0.001 and
n = 0.99 on the extended zone (COM 1 solution).
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Fig. 31. Spin susceptibility χs(k) for U = 4, T = 0.001 and
n = 1, 0.99, 0.98, 0.96, 0.94, 0.92 and 0.9 (COM 1 solution).

The spin correlation function in k space has been re-
cently studied by means of various approaches. For in-
stance, by qMC in the weak interacting regime [29,30],
by means of BA in the strong interacting regime [49] and
for any value of U by exact diagonalization technique [26].
All of them find a very narrow 2kF peak which is incom-
mensurate away from half filling. These calculations were
performed on finite-size systems. A detailed study of the
size dependence of S(2kF) is given in reference [49], where
it is shown how the peak narrows and increases with the
system size.

The spin-correlation function in k space is shown in
Figure 29 for the COM 1 solution at quarter filling and
various interaction strengths. As U increases, an evolution
towards a peaked curve at 2kF is observed, in qualitative
agreement with previous calculations [26,29,30,49]. We
must, however, remark that within the present approach
the peak at 2kF is much broader. At half filling, the height
of the 2kF peak is very much enhanced, in agreement with
BA calculations in the large-U limit. The reduction of the
S(2kF) peak as n decreases from half filling is due to the
presence of holes moving in the system.

The magnetic or spin susceptibility χs gives informa-
tion about the physics of the spin excitations. This prop-
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Fig. 32. Interband spin susceptibility χinter
s (k) for U = 4,

T = 0.001 and n = 1, 0.99, 0.98, 0.96, 0.94, 0.92 and 0.9
(COM 1 solution).

χ

Fig. 33. Static and uniform spin susceptibility χs as function
of T for n = 0.5 and U = 2, 3 and 4.

erty is calculated by means of equation (54) and analyzed
as a function of temperature, momentum and interaction.

Close to half filling we have a paramagnetic solution
with period 2π, but a strong AF order, with a quasi-halved
Brillouin zone, is present (see Fig. 30). When we move
away from half filling the central peak opens in two sep-
arate peaks (see Fig. 31). The incommesurability ampli-
tude increases linearly with doping with a coefficient of
π/2 at zero temperature. If we distinguish the intraband
and interband contributions we can show that the inter-
band contribution is very little (see Fig. 32). At half filling
the susceptibility is strongly reduced and goes to zero at
zero temperature: the interband contribution goes much
slower to zero with temperature and for the analyzed tem-
perature (T = 0.001) is the only one present (see Figs. 31
and 32).

Figure 33 shows the temperature evolution of χs for
weak and intermediate coupling. Monte Carlo data [56]
and qtm results [21] are included for comparison. The
agreement is good, with a maximum deviation of 15%.
We shall note that the position of the maximum does
hardly depend on the strength of interaction and is
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Fig. 35. Spin susceptibility χs(k) for n = 0.5, T = 0 and
U = 0, 2, 4 and 10 (COM 1 solution).

located around 0.2 (in units of t). This indicates that the
energy necessary to excite the spin modes does not depend
on U . Since U is of Coulomb origin and affects the charge
degrees of freedom, the U -independence of the peak in the
spin susceptibility shows that the spin excitations are in-
dependent of the charge. This is coherent with a Luttinger
liquid description of the quarter-filled Hubbard chain. On
the contrary, at half filling the position of the T -dependent
spin susceptibility does strongly vary with U (see Fig. 16
and Ref. [24]), indicating the breaking of the Luttinger
liquid picture.

Figure 34 shows the strong coupling spin susceptibility
for several particle densities. Once again, COM 1 results at
quarter filling are in good agreement with BA [15,16] (see
value and position of χmax

s ), whereas it severely disagrees
in the case of higher particle-densities.

The low temperature, momentum dependence of the
magnetic susceptibility χs(k) at quarter filling is shown
in Figure 35 for all coupling regimes. As U increases,
the peak moves towards lower k, indicating that spin
excitations of larger wavelength mostly contribute. Also,
two satellite structures appear and increase with U . Such
structures have their origin in the van Hove singularities
of the density of states. They are not observed in qMC

χ

Fig. 36. Static and uniform spin susceptibility χs as a function
of U for n = 0.5 and T = 1/14.5.

Fig. 37. Static and uniform spin susceptibility χs as a function
of T for n = 0.5 and U = 4.

studies probably because they exist only at very small
temperatures (see Fig. 38).

The static uniform susceptibility is plotted in Fig-
ures 36 and 37 as function of U and T , respectively. In Fig-
ure 36 we also report the quantum Monte Carlo data [55]
and the BA results. The agreement, in particular in the
weak coupling regime, is quite good. In Figure 37 the com-
parison with the qMC [55] and the qtm [21] results shows:
1) the qMC data do not agree at all with the qtm results,
which are practically exact; 2) a good qualitative agree-
ment between COM and qtm at very low temperatures for
all three values of Coulomb repulsion U(the qtm results
present a more pronounced peak) and a very good quanti-
tative agreement at intermediate and high temperatures.
Anyway, the position of the peak is very well reproduced
confirming once more the capability of the present method
to catch the spin energy scale although the retained spin
correlations are weaker than what is expected according
to the exact and numerical results.

The weak coupling spin susceptibility (normalized to
its non-interacting value at k = 0: χs(0)[U = 0] =

√
2

π ,
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see Eq. (57)) is shown in Figure 38. Despite the simplicity
of the one-loop approximation we get a good qualitative
agreement with the quantum Monte Carlo data [55], as
opposed to RPA fits, which need to take different values
for the renormalized interaction, as it is remarked in ref-
erence [56]. We exactly reproduce the peak at π/2, which
vanishes on increasing temperature, and the asymmetry
they found in the intensity between k = 0 and k = π.

4 Conclusions

In this paper we have analyzed the adequacy of the COM
to describe the physics of correlated electrons in 1D sys-
tems; in particular, we studied the 1D Hubbard model.
Various physical properties, like ground-state and single-
particle properties, the thermodynamics, susceptibilities
and some correlation functions, have been calculated and
compared to results obtained by means of the Bethe
ansatz, when available, and other analytic and numerical
techniques (qMC, GA, SCLA, RG, g-ology).

By considering a two-pole approximation and a para-
magnetic state, the model is solved within the COM. Two
mathematical solutions (COM 1 and COM 2) are ob-
tained. In the case of half filling an analysis of the pa-
rameters and the energy spectra that characterize the so-
lution shows that only COM 1 is consistent with the BA
results. Hence, the subsequent properties are discussed
only for this solution. The half-filled and arbitrary-filled
cases are addressed separately since they lead to different
characteristics.

The essential physics of the half-filled Hubbard chain
is reproduced satisfactorily by the COM 1 solution. A
gap opens for any finite value of the U interaction and
the bands show the characteristic AF-like features, with
bandwidth of the order of the antiferromagnetic exchange
interaction J = 4t2

U . This indicates, therefore, an insula-
tor with short-range AF correlations, as it is known from
the exact BA result. Also, the evolution of the total en-
ergy, the double occupancy and the local magnetization
with U are in excellent agreement with BA and improves
significantly the results of other analytic approaches.

The thermodynamic properties give the following pic-
ture. As the interaction strength increases relative to the
non-interacting bandwidth W and reaches U > W = 4t,
two energy scales manifest in the system in the form of
two peaks in the specific heat. These peaks are located
at low (T ∼ J) and high T and are associated to spin
and charge excitations, respectively. The spin nature of
the low-T peak in CT is confirmed by the evolution of the
local magnetization with temperature. In the strong in-
teracting regime, the spin and charge degrees of freedom
also manifest separately in the entropy, where T ∼ t is the
border between the two regions. This picture agrees qual-
itatively and quantitatively (position and height of peaks
in CT and border between the spin and charge-dominated
regions in ST ) with BA.

The behaviour of the charge excitations near the
metal-insulator transition is also very well captured. This
can be seen from the analysis of the charge susceptibil-
ity χc versus T for particle densities approaching n = 1.
The agreement with BA is only qualitative because the
faster opening of the gap in COM 1 leads to larger values
of χc.

The physics of the spin excitations, extracted from
the evolution of the spin susceptibility χs, is not prop-
erly described. Our results for χs indicate, in disagree-
ment with BA, a renormalization of the spin excitations
as the system approaches half filling, analogous to what
is observed for the charge excitations. This failure is in-
herent to the one-loop approximation; within the latter
gaps in charge and spin sectors open simultaneously since
the charge and spin correlation functions have the same
spatial dependence.

The basic physics of the arbitrary-filled Hubbard chain
is reproduced satisfactorily by the COM 1 solution. In
agreement with BA results, we obtain a non-magnetic
metal for any coupling regime. Namely, the band spec-
trum is gapless for any value of U , it loses gradually its
AF-like characteristics, and the amplitude of the spin cor-
relation function is much reduced in comparison with that
obtained at half filling.

Our analysis for arbitrary filling is centered mostly on
n = 0.5 which is relevant to real quasi-1D systems. At this
particular filling, low-temperature local quantities like the
double occupancy and the chemical potential are in very
good agreement with BA results for both weak and strong
coupling regimes. The internal energy versus particle den-
sity in COM 1 has a reasonable agreement with BA al-
though it is not so good as that of other approaches.

The evolution of the specific heat with particle density
reproduces qualitatively the BA results. The T -dependent
spin susceptibility at quarter filling has a reasonable agree-
ment in the weak and strong coupling regime with quan-
tum Monte Carlo and BA data, respectively.

The momentum distribution function n(k), the corre-
lation functions and the susceptibilities provide informa-
tion on the universality class this system belongs to and
on its charge and spin dynamics.

We can grasp some characteristic features. Namely,
the weak singularity at 3kF obtained in the large-U limit
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BA calculations at quarter filling would correspond to the
discontinuity near 3kF that is observed in the COM 1
momentum distribution function. This feature would also
agree with the 3kF oscillation of the distribution func-
tion in real space C(r) obtained by numerical techniques.
The kF oscillations of C(r) observed by exact diagonaliza-
tion calculations are also reproduced in the weak coupling
COM 1 results.

The approach manages to grasp the different physics
for the half-filled and arbitrary-filled case, in particular
quarter filling. By comparing the amplitude of the spin
correlation function in real space S(r), we conclude that
at quarter filling these correlations are much weaker and
decay more slowly than at half filling, in agreement with
exact diagonalization results.

The 2kF singularity of the k-dependent spin correla-
tion function S(k) obtained in recent BA and numerical
approaches is qualitatively described in COM 1 at quar-
ter filling, where, by increasing U , an evolution towards a
peak structure in S(k) is observed near 2kF. This peak is
much enhanced at half filling, in agreement with BA.

To summarize, when integral properties are addressed
(local quantities, thermodynamics, total energy), the
COM in the two pole approximation is accurate enough to
yield a correct description of the system. The agreement
with BA is indeed excellent in the case of half filling and
improves the results of other analytical methods which
are more lengthy and more complex in many cases. The
charge susceptibility is also well described as the charge
excitations are dominated by the energy scale set by the
opening of the Mott gap, and this is indeed caught by a
two-pole approach. However, regarding the spin dynamics
the one-loop approximation can only grasp some general
physics but it is too simple to investigate it properly. We
expect to receive better results whenever we will set up
an approximation, for the two-particle propagators, well
beyond the one-loop one used here. Anyway, it is worth
noting how this simple two-pole approximation is able to
catch the spin and charge-dominated energy regions.
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Appendix A: The 2-pole approximation

The doublet field (3) satisfies the Heisenberg equation

i
∂

∂t
Ψ(i) = J(i) =

(−µ ξ(i) − 4t [cα(i) + π(i)]
−(µ − U)η(i) + 4t π(i)

)
(A1)

where π(i) is the composite field

π(i) =
1
2
σµ nµ cα(i) + c(i)

[
c†α(i) c(i)

] · (A2)

In the two-pole approximation we linearize the equa-
tion of motion (A1) as

i
∂

∂t
Ψ(i) ∼=

∑
j

ε(i, j)Ψ(j) (A3)

where the energy matrix ε(i, j) is defined by

ε(i, j) =
∑

l

〈{
J(i), Ψ †(l)

}〉 〈{
Ψ(l), Ψ †(j)

}〉−1 · (A4)

In the two-pole approximation, by assuming transla-
tional invariance, the thermal retarded Green’s function
S (k, ω) = F [〈R [Ψ(i)Ψ †(j)

]〉]
is given by

S (k, ω) =
1

ω − ε(k)
I(k). (A5)

where ε(k) = F [ε(i, j)] is the energy matrix in momentum
space and I(k) = F 〈{Ψ(i), Ψ †(j)

}〉
is the normalization

matrix.
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25. J. Schulte, M.C. Böhm, Phys. Rev. B 53, 15385 (1996)
26. J.H. Xu, J. Yu, Phys. Rev. B 45, 6931 (1992)



A. Avella et al.: The 1D Hubbard model within the Composite Operator Method 417

27. S. Sorella, A. Parola, M. Parrinello, E. Tosatti, Euro-
phys. Lett. 12, 721 (1990)

28. R. Preuss, A. Muramatsu, W.V. der Linden, P. Dieterich,
F.F. Assaad, W. Hanke, Phys. Rev. Lett. 73, 732 (1994)

29. J.E. Hirsch, D.J. Scalapino, Phys. Rev. B 27, 7169 (1983)
30. M. Imada, Y. Hatsugai, J. Phys. Soc. Jpn 58, 3752 (1989)
31. F. Mancini, A. Avella, Pauli’s Principle, Green’s Functions

and Equations of Motion (2000), cond-mat/0006377
32. A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Y.

Yushankhai, Int. J. Mod. Phys. B 12, 81 (1998)
33. F. Mancini, S. Marra, H. Matsumoto, Physica C 244, 49

(1995)
34. F. Mancini, S. Marra, H. Matsumoto, Physica C 250, 184

(1995)
35. F. Mancini, S. Marra, H. Matsumoto, Physica C 252, 361

(1995)
36. V. Fiorentino, F. Mancini, E. Zasinas, A. Barabanov,

Phys. Rev. B 64, 214515 (2001)
37. F. Mancini, D. Villani, H. Matsumoto, Physica C 282,

1755 (1997)
38. A. Avella, F. Mancini, D. Villani, Sol. Stat. Comm. 108,

723 (1998)
39. F. Mancini, D. Villani, H. Matsumoto, Phys. Rev. B 57,

6145 (1998)

40. A. Avella, F. Mancini, D. Villani, Phys. Lett. A 240, 235
(1998)

41. A. Avella, F. Mancini, M. Sánchez, Europhys. Lett. 44,
328 (1998)

42. M. Sánchez, A. Avella, F. Mancini, Physica C 317-318,
515 (1999)

43. F. Mancini, Phys. Lett. A 249, 231 (1998)

44. J.E. Hirsch, Phys. Rev. B 22, 5259 (1980)

45. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987)

46. F.D. Buzatu, Mod. Phys. Lett. B 9, 1149 (1995)

47. M. Takahashi, Progr. Theor. Phys. 47, 69 (1972)

48. J. Bonner, M. Fisher, Phys. Rev. 135, 640 (1964)

49. M. Ogata, H. Shiba, Phys. Rev. B 41, 2326 (1990)

50. S. Qin, L. Yu, Phys. Rev. B 54, 1447 (1996)

51. H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990)

52. T. Usuki, N. Kawakami, A. Okiji, Phys. Lett. A 135, 476
(1989)

53. P. Fazekas, K. Penc, Int. J. Mod. Phys. B 1, 1021 (1988)

54. H. Yokohama, H. Shiba, J. Phys. Soc. Jpn 56, 1490 (1987)

55. J.E. Hirsch, D.J. Scalapino, Phys. Rev. B 29, 5554 (1984)

56. H. Nélisse, C. Bourbonnais, H. Touchette, Y. Vilk, A.-M.
Tremblay, Physica B 12, 351 (1999)


